Lighting: Has the market transformed?

Christopher G. Lubeck
April 13, 2015
Installing energy efficient lighting is one of the most effective, sustainable design strategies available today.
Market Transformation Definition

Is the strategic process of **intervening in a market to create lasting change in market behavior** by removing identified barriers or exploiting opportunities to accelerate the adoption of all cost-effective energy efficiency as a matter of standard practice.

Through collaboration and pooling of resources, the region’s utilities and stakeholders have harnessed their collective influence to drive **market adoption of energy efficiency products**, services and practices for the benefit of utilities, consumers and the region.
Forces driving market transformation

- Education
- Cost of new technology vs incumbent
 - LED vs Halogen lamps
- Confusion
 - EISA - Does not ban incandescent or any specific bulb type; they say that bulbs need to use about 25% less energy
- Regulations and legislation
 - EPACT
 - Energy Independence and Security Act
- Risk adverse
 - Objectives
 - Standards
 - DLC, CEE, CA CEC volunteer LEDr specification and Energy Star
 - CFLs learning curve
Example - T12 is 43% of INSTALLED US SOCKET BASE

Total Fluorescent Sockets in US

- T12: 43%
- T8: 52%
- T5: 5%

2.2 Billion Sockets

NEMA Lighting Results

NEMA Fixture Dollars Market Trend

<table>
<thead>
<tr>
<th>Quarter Ending</th>
<th>Jun-12</th>
<th>Sep-12</th>
<th>Dec-12</th>
<th>Mar-13</th>
<th>Jun-13</th>
<th>Sep-13</th>
<th>Dec-13</th>
<th>Mar-14</th>
<th>Jun-14</th>
</tr>
</thead>
<tbody>
<tr>
<td>SSL</td>
<td>21%</td>
<td>23%</td>
<td>26%</td>
<td>27%</td>
<td>29%</td>
<td>37%</td>
<td>42%</td>
<td>43%</td>
<td>45%</td>
</tr>
<tr>
<td>Classic (INC, HAL, CFLi)</td>
<td>79%</td>
<td>77%</td>
<td>74%</td>
<td>73%</td>
<td>71%</td>
<td>63%</td>
<td>58%</td>
<td>57%</td>
<td>55%</td>
</tr>
</tbody>
</table>

NEMA Lamp Dollars Market Trend (Including ballast)

<table>
<thead>
<tr>
<th>Quarter Ending</th>
<th>Jun-12</th>
<th>Sep-12</th>
<th>Dec-12</th>
<th>Mar-13</th>
<th>Jun-13</th>
<th>Sep-13</th>
<th>Dec-13</th>
<th>Mar-14</th>
<th>Jun-14</th>
</tr>
</thead>
<tbody>
<tr>
<td>LED</td>
<td>11%</td>
<td>13%</td>
<td>12%</td>
<td>13%</td>
<td>13%</td>
<td>13%</td>
<td>14%</td>
<td>16%</td>
<td>17%</td>
</tr>
<tr>
<td>Classic (INC, HAL, CFLi) (Includes ECG)</td>
<td>89%</td>
<td>87%</td>
<td>88%</td>
<td>87%</td>
<td>87%</td>
<td>86%</td>
<td>84%</td>
<td>83%</td>
<td>78%</td>
</tr>
</tbody>
</table>

Source: NEMA
Breakout session

• Incentives driving new technology
 • When is the time to stop?

• Specifications – performance vs energy efficiency
 • DLC, CEE, CA CEC volunteer LEDr and Energy Star

• Mid stream programs

• Internet

• Controls